Abk�rzung zur Hauptnavigation Abk�rzung zu den Newsmeldungen Abk�rzung zu den Topstories  
English Version English Version
  MedUni Wien  trenner  Intranet  trenner  MedUni Wien - Shop  trenner  Universitätsbibliothek  trenner  Universitätsklinikum AKH Wien  trenner
 
Krebsforschung.png
 
 
 
Hauptnavigation
  • Home
  • Mission Statement
    • Chronik
    • 50 Jahre Institut für Krebsforschung
    • Imagevideo: Institut für Krebsforschung
  • Forschung
    • Forschungsschwerpunkte
    • Forschungsgruppen
    • Wissenschaftliche Services - Core Facilities
  • Lehre
    • Vorlesungen und Seminare des Institutes
    • Universitätslehrgang Toxikologie für Postgraduierte
    • PhD Program Inflammation and Immunity
    • PhD Program IPPTO Translational Oncology
    • PhD Programm Malignant Diseases
    • PhD Programm Clinical and Experimental Oncology
  • Kontakt
    • Kontakt
    • Lageplan
 
Forschung / Forschungsschwerpunkte / Progression und Metastasierung von Tumoren / Iros Barozzi / Research Projects
 
Subnavigation
  • Forschungsschwerpunkte
    • Zelluläre und molekulare Tumorbiologie
    • Angewandte und experimentelle Onkologie
    • Sicherheit chemischer Substanzen und Krebsprävention
    • Progression und Metastasierung von Tumoren
      • Wolfgang Mikulits
      • Iros Barozzi
        • Research Projects
        • Group Members
        • MSc and BSc Thesis Projects
  • Forschungsgruppen
  • Wissenschaftliche Services - Core Facilities


Inhaltsbereich

Regulated transcriptional noise

Leveraging single-cell transcriptional data, we aim at classifying mammalian genes based on their pattern of transcriptional heterogeneity across cells of the same type, in both normal tissues and disease states (Figure 1), with the ultimate goal of identifying if these differences in variability are driven by distinct modes of regulation.

Figure 1: Schematic showing a hypothetical classification of genes based on their patterns of transcriptional heterogeneity across cell types and conditions. (click to enlarge)

A conserved survival mechanism of drug-tolerant persister cells

We previously identified a transcriptional signature that predicts the phenotype of those luminal breast cancer cells surviving short-term endocrine therapies (Hong et al. 2019). These cells, often called drug-tolerant persisters, will eventually lead to relapse. We aim at: 1) investigating the level of conservation of this signature across tumors of different origin and its importance in survival to different therapeutic strategies, and 2) characterizing its upstream regulators.

Figure 2: Dimensionality reduction of the transcriptome of 100,000 single cells either sensitive to all treatments or treated with three different therapeutic strategies (T1-3). The derived resistant lines (T1-2Res) along with the corresponding second-line treatments are also showed. The arrow and the box indicate the bottleneck through which all future drug-tolerant persister cells are going through, irrespectively of treatment. (click to enlage)

Manipulating phenotypic heterogeneity to delay tumor progression

The genes of the so-called epigenetic regulators are often mutated or mis-regulated in cancer. We hypothesize that their aberrant activity is associated to transcriptional fluctuations that could be manipulated to the patient’s advantage (Figure 3). Based on this rationale, we are combining in vitro perturbations (directed at epigenetic regulators) with single-cell transcriptomics, to pinpoint novel treatment strategies to delay tumor progression.

Figure 3: Rationale behind combining single-cell transcriptomics with perturbations of epigenetic regulators.
(click to enlarge)

Development of new methods to identify the upstream regulators of gene activity

We are leveraging previously published, validated regulatory interactions to train machine learning models to then predict novel, tissue-specific interactions genome-wide. To this end, we are combining co-expression networks, transcription factor binding profiles and local, chromatin conformation measurements.

 
Drucken
 
 
© MedUni Wien | Impressum | Nutzungsbedingungen | Datenschutzerklärung | Barrierefreiheit | Kontakt